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Background and Purpose 

Conventional methods for evaluating the utility of score profiles rely on covariances (or correlations) among 

subscores and on traditional indices of reliability (e.g., coefficient alpha). This is true of informal methods that 

evaluate subscore correlations (Haladyna & Kramer, 2004), and of more formal methods proposed by 

Haberman and colleagues (Haberman, 2008; Sinharay, 2013) that quantify the extent to which subscores add 

variance that is reliably different from what can be obtained from the total score (Haberman, 2008). Feinberg 

and Wainer (2014) empirically derived a simplified variation of Haberman’s approach and referred to it as the 

value added ratio (VAR); when VAR is greater than 1.0, subscores are worth reporting. Studies applying VAR 

and similar indices to data from several operational testing programs have demonstrated that subscores are 

seldom worth reporting (e.g., Sinharay, 2010; 2013).   

 

Although VAR and other correlation-based methods for evaluating subscore utility provide a useful way to 

summarize relationships among variables, they have several limitations.  

 The correlation is a group index and may not accurately convey the degree of subscore profile variability 

among low proficiency examinees or examinees who belong to certain subgroups (Sinharay & Haberman, 

2014). The high correlations often observed among subscores are driven, in part, by high proficiency 

candidates who tend to score well in all content areas.  

 Correlations ignore systematic differences in subtest (i.e., task) difficulty. Subtraction and addition are 

highly correlated, but are meaningfully different constructs for some people. A struggling second grader 

who scores 60% in subtraction and 90% in addition is poorly served by a total score of 75%. Similarly, 

push-ups and pull-ups are well correlated, but one is more difficult than the other. These differences in 

difficulty can and sometimes should be scaled away, but other times they are important to acknowledge.  

 Conventional reliability coefficients and standard errors of measurement (SEM) are averages; they fail to 

take into consideration the well-known fact that score precision varies by examinee.  

 Usual methods for evaluating subscore utility answer the question “Are these subscores reliably different 

from the total score?”  However, examinees or other users are often more interested in the question, “Are 

these two subscores different from each other?”  This is, admittedly, a minor limitation, because the two 

questions often give the same answer.  

 VAR and related methods for evaluating subscore utility are not sensitive to the possible outcome that 

subscores will be informative for some individuals but not for others. They unnecessarily frame the issue 

as a dichotomous decision – that subscores are either useful or that they are not. It is easy to imagine 

situation where VAR < 1.0 and yet subscores are useful for some subset of examinees. Even in those few 

instances for which VAR > 1.0 and subscores are deemed useful, there undoubtedly will be individuals for 

whom subscores provide no meaningful information beyond the total score.  

In short, VAR and related correlation-based indices are helpful for summarizing the relationships among 

variables. However, by focusing exclusively on variables instead of people, they provide an incomplete 
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summary of profile utility. A more effective approach to making decisions about subscores would include an 

analysis of actual score profiles – by focusing on rows of data rather than just the columns.  

 

This paper introduces an alternative method for evaluating subscores. It assumes score profiles may be useful 

for some examinees but not for others. The method: (a) is sensitive to individual differences in profile 

variability; (b) accounts for differences in measurement precision across examinees; and (c) is consistent with 

multivariate generalizability theory. The method is applied to real test data and compared to VAR. The next 

section describes the indices and the data to which they were applied.  

 

Method 

Overview 

Brennan (2001, p. 323) introduced a reliability-like index for score profiles based on generalizability theory. 

Designated asG,  it indicates the proportion of variance in observed score profile variance attributable to 

universe (true) score profile variance. G  estimates the reliable profile variance for a population; as such it is 

an average, with the same value applying to all examinees in a particular sample. Of course, profile variability 

varies by individual, as does the amount of measurement error in the scores that make-up the scores in that 

profile. The following text describes an index for each individual that summarizes the amount of observed 

variance relative to error variance expected in a score profile.    

 

Profile Variance and Error Variance  

Observed Score Profile Variability.  The variability of a score profile indicates the extent to which that profile 

contains information about an examinee’s proficiency across different content domains. Relatively flat profiles 

contain little or no information beyond the total score, while profiles with much dispersion carry information. 

While there are different ways to gauge the variability of a score profile, one traditional index is the within-

examinee variance across subtests. The computation for the profile variance is made explicit here as it comes 

into play later:    
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where Xps•  is the score for examinee p on subtest s,  and  Xp••  is the mean for examinee p  across s subtest 

domains, and ns  is the number of subtests.  

 

One common observation is that σ
2
p varies as a function of examinee ability, with low scoring exhibiting more 

variable score profiles than high scoring examinees, suggesting the possibility that score profiles might be 

more useful for low-scoring examinees. Another finding is that low-scores are associated with greater amounts 

of measurement error than high scores (e.g., Brennan, 1998; Feldt, Steffen, & Gupta, 1985). The index σ
2

p  by 

itself is limited because measurement error contributes to profile variability, with unreliable subtests producing 

more variable profiles.  One needs to determine if the more variable score profiles for low scoring examinees 

is a consequence of greater error variance.  

 

Error Variance. Traditional subscore reliabilities and SEMs are constant over all examinees; they have limited 

use here because the SEM is known to vary with examinee proficiency. The conditional SEM, or its square, 

indicates the error for individual examinees and provides a useful way to determine the expected variability in 

score profiles due to random noise.  

 

Brennan (1998, 2001) gives the computations for two types of conditional errors based on generalizability-

theory: absolute error variance and relative error variance. Absolute error is generally greater than relative 

error, and is common in domain-referenced testing; it is also easier to compute. This paper is restricted to 
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absolute error, although methods illustrated here could apply to relative error. The absolute conditional error 

variance for examinee p on subtest s is given by:  

 

 σ
2
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∑ (𝑋𝑝𝑠𝑖−𝑋𝑝𝑠•)
2

𝑖
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where Xpsi is the response (0, 1) by examinee p to item i  in subtest s, and Xps •  is the mean score over ni  items 

in subtest s for examinee p (see Brennan 2001, equation 5.32 for an equivalent expression). This equation 

applies to performance ratings and dichotomously-scored items, although there are simpler computations for 

dichotomous scores (Brennan, 2001; Lord, 1955). The square root of equation (2) is designated as the 

conditional SEM.  

  

The relationship of equation (2) with the total group reliability is well known:  the square root of the mean of 

σ
2
(Δp) is the traditional total group SEM; the reliability coefficient can be obtained from the total group SEM 

and SD (Lord, 1955; 1957). Equation (2), which corresponds to absolute conditional error, is the basis for KR-

21 in classical theory or to the phi coefficient in generalizability theory. Meanwhile, the equation for relative 

conditional error, designated as σ
2
(δp) (Brennan, 2001), serves as the basis for KR-20, coefficient alpha, and 

the generalizability coefficient. We point this out because a fundamental point of this paper is that traditional 

total group indices can be deconstructed into their individual components.     

 

Let σ
2
(Δp•) indicate the mean error variance over subtests for examinee p:  

  

 σ
2
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This value estimates for each examinee the expected variability across subtests just due to noise (random 

error). As we later illustrate, it is informative to compare mean error variances and profile variances on the 

same plot. 

 

Ratio of Profile Variance to Error Variance.  PVEV indicates the extent to which the score profile for 

examinee p provides information above that expected by measurement error:  

 

   PVEV = σ
2

p / σ
2
(Δp•)    (4) 

 

As the ratio of two variances, this index should follow an F distribution with an expected value of 1.0. Values 

substantially larger than 1.0 indicate that the score profile contains variability greater than what is expected 

due solely to measurement error. Although interest here is in PVEV for individual examinees, the mean PVEV 

obtained over numerous samples of examinees is expected to exhibit a monotonic relationship with G , the 

reliability of within-person score profiles for those same samples.  

  

Value Added Ratio   

VAR represents a slight modification of the indices due to Haberman (2008). The original Haberman index is 

based on the notion that a subscore has value if it can predict a parallel measure of itself on a future test. If the 

prediction is more accurate than what can be obtained from the total test score, the subscore adds value; if the 

subscore is less accurate than the total score for predicting future subscore performance, then it is not useful. 

Haberman proposed calculating the accuracy of the subscore and the total score as predictors, and referred that 

index as the proportion reduction in mean-square-error (PRMSE).  
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Feinberg and Wainer (2014) proposed that these two quantities be formulated as a ratio, and referred to it as 

VAR. They further found that VAR could be well estimated from the reliability of the subscore and the 

disattenuated correlation between the subscore and the remainder score (total test without items from the 

subscore), where the disattenuated correlation is equal to the raw correlation divided by the square root of the 

product of subscore remainder score reliabilities. Let r1 be the reliability of the subscore and r2 be the 

disattenuated correlation between the subscore and remainder. Then,  

 

 VAR = 1.15 + 0.51r1 − 0.67r2 (5) 

Data Source 

Data were obtained for a high-stakes assessment in a health profession completed by 539 examinees. The test 

consists of approximately 350 items partitioned into 7 subscores (e.g., anatomy, pathology), with each subtest 

consisting of 40 to 60 items (see Table 1 for details). Both VAR and PVEV were computed as well as other 

summary statistics.  

 

Results 

VAR 

For each subtest, Table 1 presents means and SD on a proportion correct metric, subtest reliability, 

disattenuated correlation with remainder score, and VARs. The total score mean was 0.64, with subtest means 

ranging from 0.52 to 0.69. Subscore coefficient alphas ranged from 0.54 to 0.78, and disattenuated correlations 

of the 7 subscores with remainder scores were generally high, falling between 0.75 and 0.98. VARs ranged 

from 0.79 to 0.96. As none of the values exceeded 1.0, it is concluded that subscores are not useful for any of 

the subtests.  

 

Table 1. Descriptive Statistics for Subscores 

Subscore Mean SD α  rdis VAR 

A 0.52 0.14 0.78 0.88 0.96 

B 0.64 0.11 0.70 0.88 0.92 

C 0.60 0.13 0.74 0.95 0.89 

D 0.66 0.12 0.76 0.86 0.96 

E 0.67 0.10 0.69 0.98 0.85 

F 0.63 0.94 0.66 0.90 0.92 

G 0.69 0.84 0.54 0.75 0.79 

 

 

Subscore Error and Profile Variability  

The typical examinee had a total score mean of 0.64, with a conditional standard error of about 0.025. In 

contrast, the standard errors for the typical examinee on the seven subtests ranged from about 0.060 to 0.073, 

with the larger standard errors associated with less reliable subtests. Of course, the standard errors for 

individual examinees varied as a function of their number-right score. Profile SDs ranged from 0.028 to 0.199 

with a mean of 0.090. The index of profile generalizability (Brennan, 2001) was also computed for the total 

group, with G = .59.  
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Figure 1: Mean conditional SEMs and score profile SDs at five ability levels (n = 539).  

 
 

Figure 1 shows mean values of  σ
2
p  and σ

2
(Δp•)  for examinees in five ability groups. Note that computations 

use variances; however, graphs are based on the square roots of variances (i.e., standard deviations and 

standard errors) in order to put the relevant quantities onto the observed score scale. The graph indicates that 

score profiles generally were more variable than expected just based on random error, and variability was 

greatest for low proficiency examinees. Notably, the difference between the two measures is greatest for low 

scoring examinees.  

 

Figure 2 shows the distribution of PVEV for the entire group of examinees. Values of PVEV ranged from 0.2 

to 10.3, with a median of 1.8 and a mean of 2.0. Larger values of PVEV are more likely to be associated with 

score profiles that have meaningful variability. The key is to establish a threshold above which most of the 

score profiles will carry meaning. Clearly, 1.0 is too low, and even a value of 2.0 seems too low, as 2.0 would 

indicate that the observed score variability is only twice that expected due just to measurement error.   

 

Figure 2: Frequency Distribution for PVEV (n = 539) 

 
 

Figure 3 illustrates the degree of profile variability and conditional SEMs for score profiles at four values of 

PVEV: 1.0, 1.8, 3.0 and 4.3. These values correspond to the 44
th
, 50

th
, 83

rd
, and 95

th
 percentiles of PVEV. The 

dot corresponds to the score for a person on each subtest, with the whiskers indicate ±1.0 SEM. Profiles for the 

examinees depicted in Panels A and B do not exhibit much variability, although subscore G in Panel B does 

appear to be meaningfully higher than other subscores, due in part to the small standard error associated with 

conditional  SEM, 

σ(Δp•) 

profile SD, σp 
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high scores. Meanwhile, the profiles in Panels C and D appear to be quite variable. These two examinees 

might actually benefit by focusing their remedial activities on the content covered by certain subtests.  

 

Figure 3: Illustrative Score Profiles at Different Levels of PVEV. 

Panel A 

 
Panel C 

 

Panel B 

 
Panel D 

  
 

 

Discussion 

Additional Observations 

The goal of this paper is to demonstrate a different framework for evaluating the utility of subscores. We have 

analyzed other sets of test scores besides the data presented here and have three useful observations to add.  

First, this method provides a promising way to evaluate subscore utility for different subgroups.  Although 

PRMSE recently has been suggested for such purposes (Sinharay & Haberman, 2014), group-splitting can 

wreak havoc on correlations and reliability coefficients if the splitting produces a restriction of range. Using 

data from a medical licensing test, we evaluated subscores for groups of examinees with different types of 

medical education (US vs international medical schools), and found that international students exhibited more 

variable profiles and larger values of PVEV. The finding is consistent with other reports that graduates of 

international schools have more variable curricular experiences.   

 

Second, we have used PVEV to evaluate subscores based on alternate classification schemes for items from the 

same test.  It is common to ask, “Does it make more sense to report scores based on content (e.g., disease 

categories) or on process (e.g., diagnosis, treatment)?”  While such questions sometimes can be answered 

within the correlational and factor analytic traditions, the results are not always helpful. The methods 
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illustrated here may prove to be more sensitive to subtle differences among score profiles based on different 

frameworks. On a related note, we recently found that PVEV, when coupled with correlational analyses, 

provided very convincing evidence to policy makers to abandon certain subscore schemes.  

 

Third, analyses of subscores from other tests indicate a very strong, but imperfect, empirical relationship 

between mean PVEV and G.   Although additional work is needed, we suspect two reasons why the 

relationship is not 1.0. First, to maintain consistency with other computations in multivariate generalizability 

theory, Brennan (2001) uses biased estimates of the variances that make up G  (i.e., n rather than n-1), while 

computations presented here are unbiased. Second, G  corresponds to relative error, PVEV in the present 

investigation is based on absolute error. It is possible to compute PVEV for conditional relative errors as well. 

 

Limitations and Additional Research 

While this paper advocates the use of PVEV, it does not offer guidelines regarding interpretation and use. 

Additional research into its relationship with conventional indices (e.g., VAR, G ) will help identify a threshold 

above which scores have meaningful variability. Given that G  can be interpreted as a reliability-like index, it 

would be useful to determine the value of PVEV that correspond to a particular level of G  that users of other 

reliability coefficients have grown accustomed to (e.g., .80). Another avenue would be to determine if the 

distribution of PVEV as an F-ratio can serve as a tool for interpreting PVEV.   

 

It is important to recognize that the measures of profile variance and error variance proposed here are based on 

raw percent correct scores.  It is common practice, albeit not always wise, to standardize scores or otherwise 

scale away differences in difficulty among subtest. Scaling all subtests to identical means will affect the 

results: it will reduce profile variability if raw subtest means differ.  The impact on error variances is more 

complicated. Although it seems possible to transform error variances to any scale, such a transformation may 

cloud the interpretation of observed score conditional errors.  

 

Another interpretative issue that needs to be worked out – for this or any context where subscores are reported 

– is the width of confidence intervals (CIs) and factors that affect their width. The error bars in Figure 3 are 

based on 1 SEM. One might argue that 90% or 95% CIs should be used. As with all statistical inference, one 

needs to weigh the costs of a Type I error, which will be greater in some instances than in others. Another 

factor that affects the CIs is whether an adjustment is to be made for multiple comparisons, which will increase 

the width of the CI. And, the choice of absolute versus relative SEMs also affects the CI. The present study 

was based on absolute errors which are almost always larger than relative errors. Using the relative errors 

would result in smaller CIs than reported in Figure 3. Furthermore, if score differences are subject to formal 

comparison (as when computing difference scores), then one also needs to consider the covariances between 

subtests, which will reduce width of the error band for difference scores.  

 

Finally, there are similarities and difference between observed score conditional SEMs and indices derived 

from item response theory (IRT). One notable difference pertains to the relationship between conditional 

errors and total scores. Observed-score conditional SEMs are smaller toward the low and high end of the score 

distribution (inverted U), while conditional errors in IRT are larger at the ends of the theta distribution (U-

shaped curve). The similarity between observed-score conditional SEMs in generalizability theory and person-

fit indices in IRT is that both indicate the extent to which an examinee’s item responses are consistent with the 

expected responses, given each item’s difficulty and examinee’s proficiency. Person fit in IRT seems more 

similar to the relative conditional SEM than to the absolute conditional SEM because the relative index 

includes a term corresponding to the covariance between an examinee’s item responses and vector of item 

difficulties. The relationships between person fit and conditional SEMs is worthy of further exploration as both 

may signal the presence of multidimensionality.  
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Conclusions 

Methods for evaluating subscores based on correlations and reliabilities are not sensitive to individual 

differences and run the risk of overlooking the possibility that some subscores will be useful for some people.  

Given that score profile variability and score precision vary by examinee ability and possibly by subgroup, it 

seems reasonable to suspect that the utility of subscores also may vary by examinee or subgroup. The present 

results demonstrate that there may be merit in reporting subscores for a small percentage of examinees even 

though conventional methods for evaluating subscores indicate that subscores should not be reported. 

Although the present findings are limited by the fact that they are based on subscores from a single test, they 

do support the investigation of new paradigms for evaluating subscore utility.  

 

It is often assumed that if subscores do have value, it is because they can help examinees target their 

remediation efforts, usually by focusing on weak areas. However, as illustrated in Figure 3 (Panels B and C), it 

is the high scores that have greater precision and are therefore more interpretable. The smaller conditional 

SEMs for high scores suggest an obvious but often overlooked way to interpret subscores: rather than directing 

examinees toward what to study, subscores might be useful for indicating what not to study.  

 

Finally, indices like PVEV may be more effective for encouraging dialogue between psychometricians and 

policy makers. Conventional statistical methods show that subscores are seldom meaningful, and yet subscores 

continue to be reported at the insistence of score users and policy makers. It would appear that policy makers 

have not heard the message being delivered by the psychometric press – in part because the message answers 

the wrong question. The method illustrated here is sufficiently liberal to encourage some subscore reporting, 

while highlighting instances where subscores will be futile. Such an approach may better engage policy 

makers in productive discussion by acknowledging that subscores may be meaningful for some examinees, but 

certainly not for everyone. 
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